31007619882?profile=RESIZE_400xAuthentication of Extra Virgin Olive Oil (EVOO) sometimes requires a panel of different tests and – with more sophisticated adulteration – a weight of evidence interpretation.  For more crude adulterations a single test is often enough.

One of the available tests is for fatty acids ethyl esters (FAEE).  These are more concentrated in lower quality oils (e.g.improperly stored or overripe), formed from ethanol which is a result of fermentation. EU legislation specifies a maximum 35 mg per kg FAEE concentration in EVOO.

FAEE concentration is officially measured using gas chromatography (GC) after recovery by silica gel column chromatography. While highly accurate, this method is complex, time-consuming, and relatively expensive.

This paper (purchase required) reports an alternative approach to FAEE measurement by using infra-red spectroscopy (FT-IR) with machine learning. A dataset of 170 olive oil samples with FAEE concentrations ranging from 1.81 mg/kg to 109.00 mg/kg were analysed using FTIR. Spectral data were preprocessed and used to train various regression models.

The authors report that the best performance was obtained with an XGBoost model. Explainable AI techniques (SHAP) enabled interpretation of the model and identification of spectral regions mostly associated with FAEE content.

They conclude that combining FT-IR spectroscopy with advanced ML models—particularly XGBoost—can effectively predict the concentration of FAEE.

Photo by Massimo Adami on Unsplash

E-mail me when people leave their comments –

You need to be a member of FoodAuthenticity to add comments!

Join FoodAuthenticity