dna barcoding (2)

13403642901?profile=RESIZE_400xThis study (open access) investigated species substitution, mislabeling, and the sustainability of seafood products in the seafood markets of South China. 478 samples were purchased from retail markets in 11 cities across three provinces (Guangxi, Guangdong, and Hainan) between May 2021 and December 2023. Cytochrome c oxidase subunit I (COI) gene amplification was used to identify 156 fish species across 105 genera and 60 families. The researchers have published the correlation between genetic and taxonomical details.

The researchers used a combination of morphological and DNA barcoding methods to produce an atlas guide for these 156 economically important fish species.

Molecular identification revealed that 9.6 % (15/156) of fish species were mislabelled, with commercial fraud detected in three processed species: Hilsa kelee, Chelidonichthys kumu, and Argyrosomus japonicus. Some substitutions may have been unintentional.  3.8 % (6/156) of species identified were classified as threatened by the International Union for Conservation of Nature. The study also uncovered an example of illicit cross-border sales of fish products.

The authors conclude that their findings provide a technical reference for effective fish species identification and offer valuable insights into seafood market monitoring.

Photo by Dan Gold on Unsplash

Read more…

9405157898?profile=RESIZE_584x

In the last decades, the demand for molecular tools for authenticating and tracing agri-food products has significantly increased. Food safety and quality have gained an increased interest for consumers, producers, and retailers, therefore, the availability of analytical methods for the determination of food authenticity and the detection of major adulterations takes on a fundamental role.


Among the different molecular approaches, some techniques such as the molecular markers-based methods are well established, while some innovative approaches such as isothermal amplificationbased methods and DNA metabarcoding have only recently found application in the agri-food sector.

In this review, we provide an overview of the most widely used molecular techniques for fresh and processed agri-food authentication and traceability, showing their recent advances and applications and discussing their main advantages and limitations. The application of these techniques to agrifood traceability and authentication can contribute a great deal to the reassurance of consumers in terms of transparency and food safety and may allow producers and retailers to adequately promote their products.

Read full review.

Read more…