protein (3)

13507990259?profile=RESIZE_400xThere is a growing market for the use of insect protein in feed.  The cricket species Gryllus assimilis. is approved in the EU for feeding farmed animals whilst the closely-related G. locorojo is only permitted for pets. The two are difficult to distinguish analytically in a highly processed product.

This paper (purchase required) reports a method developed on the basis of the cytochrome oxidase I gene, (COI), which was sequenced with thoroughly characterised G. locorojo and G. assimilis samples. The method is highly sensitive, detecting 0.8 pg G. locorojo-DNA or 0.1% G. locorojo incurred in feed, respectively. Authentic G. assimilis specimens were used to ensure that the G. locorojo method (Gloco-PCR) discriminates this closely related sister taxon, with a comfortable Ct-difference of 10-15. For cross analysis of true G. assimilis, similar primers with another probe were employed (Gassim-PCR) and the annealing temperature was increased from 60 °C to 62 °C.

Under these conditions, authentic G. assimilis crickets were detectable with Ct-values around 20, while G. locorojo samples showed a low detection at cycles around Ct 35. An investigation of ten ‘G. assimilis’ samples collected from Germany and four other European countries revealed that all of them were of the G. locorojo type.

The authors conclude that this small preliminary survey proves the usefulness of the method and supports the assumption that many G. assimilis crickets marketed in the EU indeed belong to the species G. locorojo. Consequently, European legislation, currently based on a white list of allowed insect species, is critically questioned.

Photo by Ivan Ivanovič on Unsplash

Read more…

12633554080?profile=RESIZE_180x180Meat species identification has always been a challenge in highly processed foods, such as gelatines and stocks.

One approach is to measure proteins and protein patterns using mass spectrometry (MS).  A previous research project, under the UK Department of Environment, Food and Rural Affairs (Defra) Food Authenticity Programme, developed and in-house validated a method using proteomics.

That work has now been built upon by another 3 Defra projects to streamline the method to look for specific markers, in a format that can be used routinely by testing laboratories, and to fully validate the routine method including by interlaboratory trial.

All four research reports are now signposted on FAN’s Research pages.  Scroll through the table to find the appropriate report reference number:

  • FA0166 – the original 2019 project – “Development, optimisation and validation of a non-targeted proteomics method for meat species identification”
  • FA0165 – “Liquid chromatography targeted mass spectrometry method to determine the animal origin of gelatine - transfer to a high throughput, low cost platform with single lab evaluation”
  • FA0177 – “Gelatine species determination, completion of method validation and determination of a quantitative method”
  • FA0187 – “Interlaboratory trial of a mass spectrometry method for meat species determination”
Read more…

12633554080?profile=RESIZE_400xDifferentiating gelatin species is an analytical challenge because of a lack of intact DNA.  Most speciation methods therefore target the profile of proteins.  Proteins are difficult to analyse - they are too large to measure directly by techniques such as LC-MS, without  prior breaking down, and their folded structure is also an important diagnostic parameter.  This structure is disrupted by many of the sampling and extraction procedures used in analytical method. Analysis of mixed gelatins is particularly difficult.

This method (open access) used a new approach based on the interaction of ethanol with amino acids inside a protein. Ethanol can denature globular proteins by disrupting intraprotein hydrogen bonds due to hydrophobic interactions. However, when added to solutions having proteins with considerable number of α-helices, ethanol can stabilize the protein structure and prevent aggregation. The specific effects of ethanol on protein structure and function can vary depending on the protein's composition and environment.

Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy was used to leverage ethanol's differential effects on gelatin's amide bands for quantifying pork gelatin contamination in bovine gelatin.

The authors report that the method showed a strong linear correlation between contamination levels and amide band transmission, with detection and quantification limits of 0.85 and 2.85 mg/100 mg (pork in bovine), respectively. It effectively identified pork gelatin in halal candy, with recovery rates from 50.05 % to 103.69 %.

Read more…